

Reches group

Prof. Tiffany Abitbol 2024

Short Peptides and Amino Acids as Building Blocks for Sustainable Materials and Coatings

Short peptides and amino acids are promising building blocks for sustainable materials as they are non-toxic and biodegradable. In this lecture, I will present bio-inspired functional coatings that are spontaneously formed by extremely short peptides and commercially available amino acids. These coatings self-assemble on metals, oxides, and polymers under mild conditions without any need for a curing step and can serve many functions including selfcleaning and antifouling. 1 We specifically showed that extremely short peptides can selfassemble into a coating that prevents the first step of biofouling, which involves the adsorption of bioorganic molecules to the substrate.² The coating significantly reduces the attachment of various organisms, such as bacteria, viruses and fungi, to surfaces.^{3, 4} Another function that these peptidebased coatings can mediate is the adhesion of mammalian cells to implants. This function is important for the integration of implants into the human body. Moreover, these peptides selfassemble in solution into particles that adsorb and release active compounds that synergistically reduce the number of bacteria, viruses and fungi.⁵ They can also be integrated into polymeric films by a simple co-extrusion protocol to form active polymeric films.⁶ Finally, we showed that an individual amino acid can self-assemble into a superhydrophobic coating that can provide surfaces with the ability to self-clean.7

ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Cite this: Chem. Commun., 2014, 50. 11154

Received 12th May 2014, Accepted 22nd July 2014

DOI: 10.1039/c4cc03578j

www.rsc.org/chemcomm

Self-assembly of a tripeptide into a functional coating that resists fouling†

Sibaprasad Maity, ‡ Sivan Nir, ‡ Tal Zada and Meital Reches*

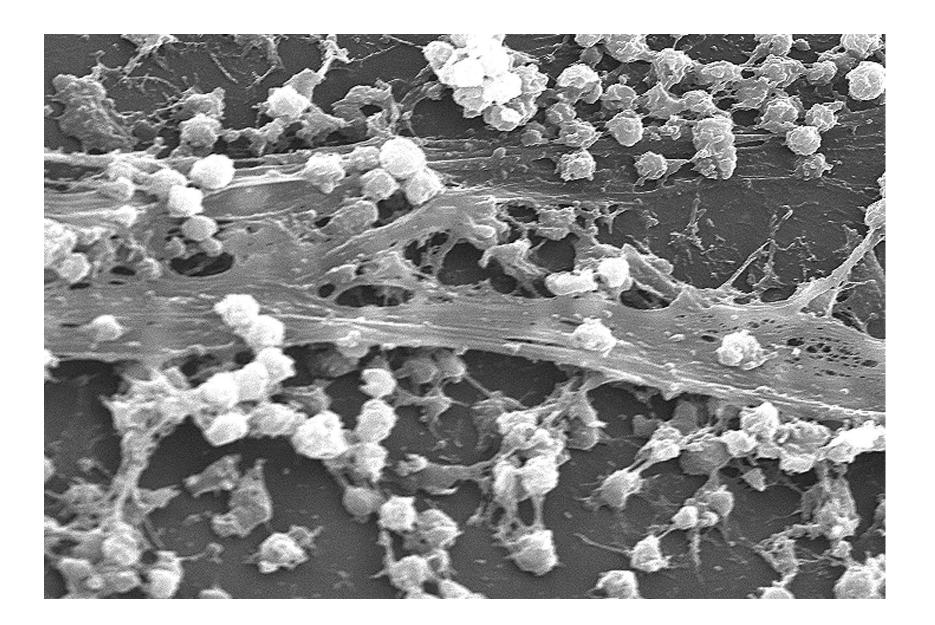
- IF = 4.3
- Time to 1st decision = 24 days
- Urgent communications of outstanding significance from across the chemical sciences. Opt in for double-anonymised peer review.
- Cited 85 times

Biofouling

 Unwanted accumulation of microorganisms (plants, algae, small animals) and their biproducts on surfaces

 Starts by the adsorption of bioorganic molecules and then continues with the attachment of organisms to this bioorganic layer

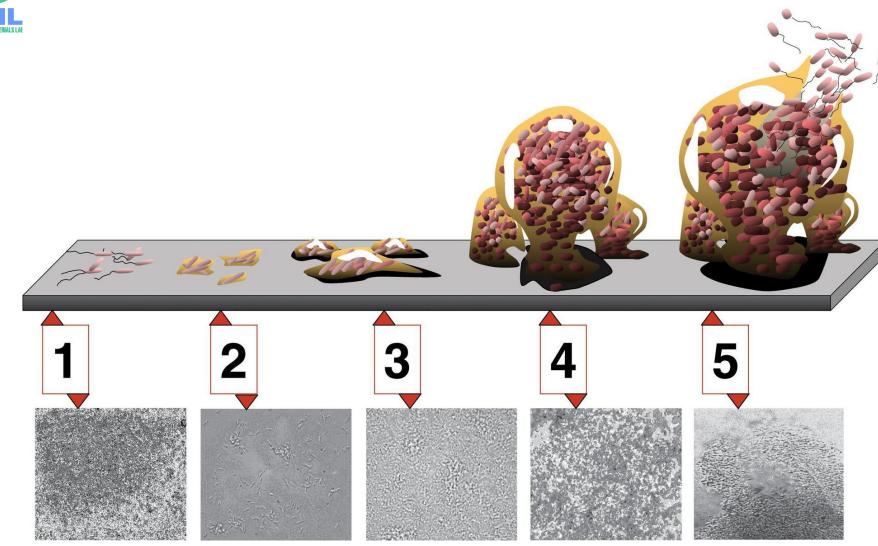
 In the case of bacteria, this leads to a well-defined bacterial network called a biofilm



Current measurement instrument encrusted with zebra mussels

EPFL

Bacterial biofilm



Staphylococcus
aureus biofilm on an indwelling catheter

EPFL

Bacterial biofilm

- (1) Initial attachment,
- (2) Irreversible attachment, (3)
 Maturation I, (4)
 Maturation II, and (5)
 Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a

developing P.

aeruginosa biofilm.

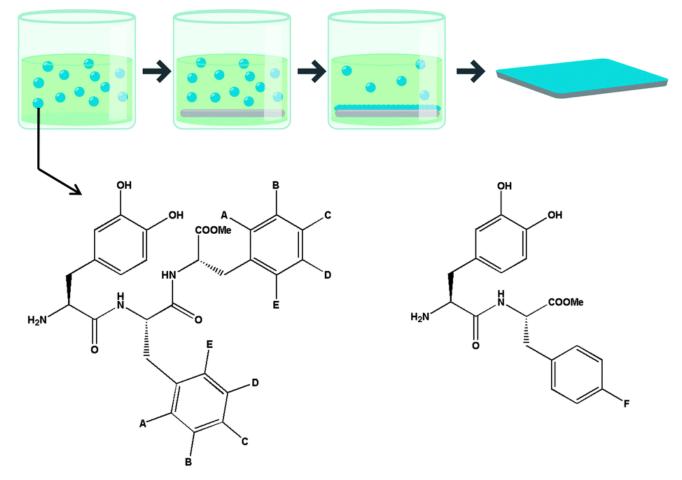
Bacterial biofilm

- Bacteria in biofilm can have different properties from free-floating bacteria of same species – the biofilm can protect the bacteria from antiobiotics and other threats, like detergents
- Biofilm in medical devices and implants can lead to severe infection termed hospital acquired infections (very worrisome!)
- Also a big impact on marine industry due to attachment or marine organisms like barnacles and mussels to ships and devices – heavy and thick layer can lead to delays and higher fuel consumption, also linked to gas emissions and the incursion invasive species into marine habitats

Antifouling approach

- Antifouling materials change the physical and/or chemical properties of a surface in such a way as to prevent the accumulation of microorganisms
- Strategies can include: enzymatic degradation, sonication, and chemical modification (pluses and minuses)
- This paper proposes an antifouling material based on the self-assembly of a low molecular weight peptide
- Synthetic tripeptide that interferes with the first step of biofouling
- Numerous reports in the literature on antibacterial peptides but none on antifouling peptides

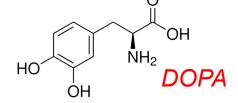
Tripeptide


 Peptide made of 3 amino acids, joined by 2 or 3 peptide bonds

An example of a tripeptide: Val-Gly-Ala

Antifouling with tripeptides

Peptide 1: A=B=D=E=-H, C= -F Peptide 2: A=B=C=D=E=-F


Peptide 3: A=B=C=D=E=-H

Dip coating

 Peptide sequence contains 3 elements that enable: (1) self-assembly into a coating, (2) adsorption onto any substrate, and (3) antifouling activity

Antifouling with tripeptides

OH COOME

H₂N

OH

COOME

H₂N

COOME

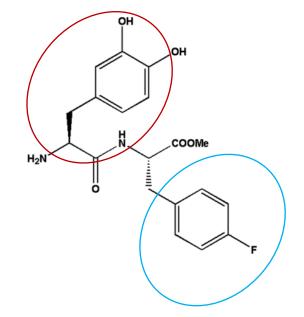
F

Peptide 1: A=B=D=E=-H, C= -F Peptide 2: A=B=C=D=E=-F Peptide 3: A=B=C=D=E=-H Peptide 4

- 2 adjacent fluorinated phenylalanine residues (1, 2)
- Self-assembly via aromatic interactions
- Carbon-fluorine bonds expected to form a "Teflon-like" non-stick surface to prevent the attachment of proteins, acting as an antifouling motif
- peptide 1 with only 1 fluorine atom on each benzene ring, and peptide 2 with 5 fluorine atoms
- 3rd amino acid is DOPA, the main constituent of mussel adhesive proteins (MAPs) – glue of marine mussels – act as a glue in tripeptide
- MAPs can adhere to almost any substrate and under harsh conditions, so can DOPA

Breaking it down

Benzenes can self-assemble via "aromatic interactions"


COOMe

Peptide 1: A=B=D=E=-H, C=-F

Peptide 2: A=B=C=D=E=-F

Peptide 3: A=B=C=D=E=-H

Sticky part/binds to everything

The trifecta:

- Non stick
- Super sticky
- Self assembling

Benzene with a fluorine atom = non-stick, antifouling part

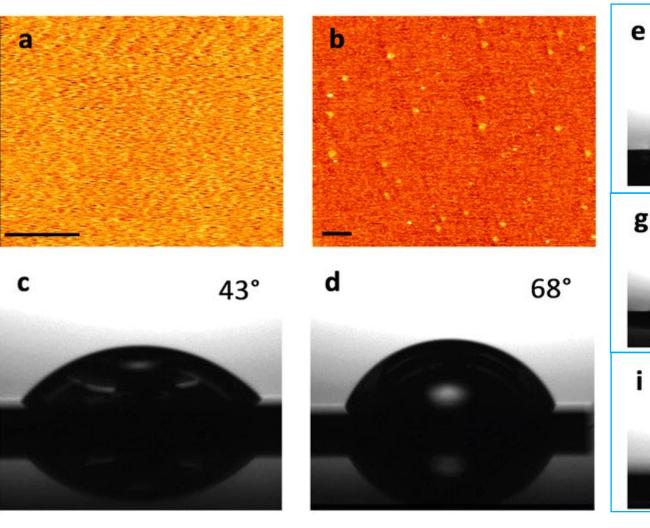

Peptide 4

Questions:

- How many C-F bonds are needed for antifouling?
- What's the difference between a tri- and a dipeptide in terms of antifouling?

Antifouling with tripeptides

Peptide 1: A=B=D=E=-H, C= -F


Peptide 2: A=B=C=D=E=-F Peptide 3: A=B=C=D=E=-H Peptide 4

- Peptides 1 and 2 with fluorine
- Peptide 3 with no fluorine
- Peptide 4: 1 DOPA and 1 fluorinated phenylalanine residue
- Coating was done by dipping (gold, silicon, titanium, glass or stainless steel) in peptide solution

Peptide 1 – contact angle increases

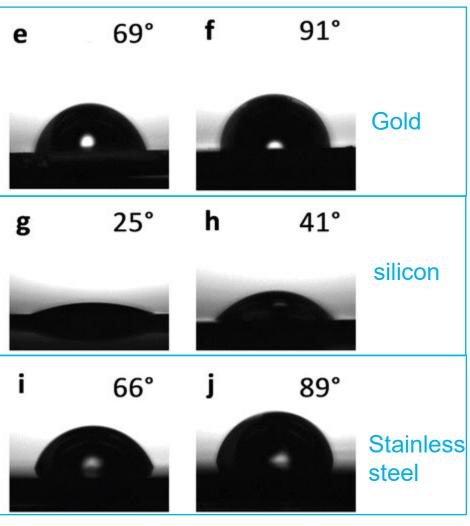
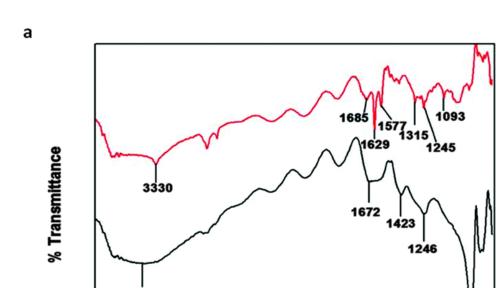



Fig. 2 Surface characterization of bare substrates versus substrates coated with peptide 1. AFM topography images of (a) bare mica, (b) coated mica, the scale bars represent 500 nm. Contact angle measurements of (c) bare titanium, (d) coated titanium (e) bare gold (f) coated gold, (g) bare silicon, (h) coated silicon, (i) bare stainless steel, (j) coated stainless steel.

Peptide 1 – ATR-FTIR

3433

3000

3500

Fig. 3 (a) ATR-FTIR spectra of bare titanium (black) and titanium coated with peptide 1 (red).

Wavenumber (cm⁻¹)

2000

1500

1000

- Compare bare titanium to coated titanium
- Peak at 875 cm⁻¹ related to bare titanium disappears; taken as evidence of coating
- Narrow peak in 3500–3200 cm⁻¹ range corresponds to the N–H stretching vibrations of the peptide; appeared at 3300 cm⁻¹
- Additional peaks in the region 1310–1000 cm⁻¹ appeared in the spectra of all peptides

QCM-D - What is it?

Quartz Crystal Microbalance with Dissipation (duh!)

Mass adsorbed on an oscillating sensor (doesn't distinguish between solvent and solute mass):

△f

time

For rigid, non-dissipative layers, Sauerbray equation applies:

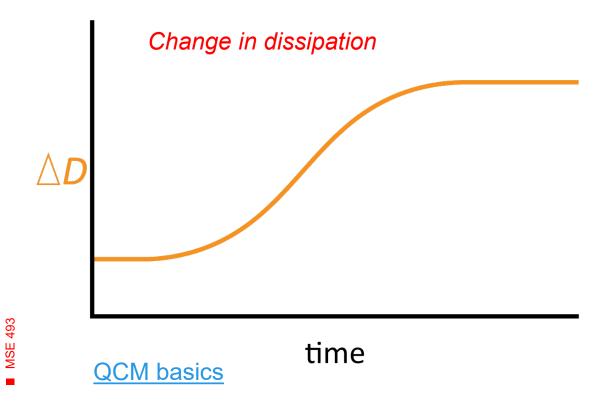
$\Delta m = -C\Delta f/n$

Where:

∆m is the change in mass per unit area (ng/cm²),

C is the sensitivity constant of the quartz crystal (typically 17.7 ng/(Hz·cm²) for a 5 MHz crystal in air)

∆f is the change in frequency (Hz) n is the harmonics number (usually 1, 3, 5, etc.).



QCM-D - What is it?

Quartz Crystal Microbalance with Dissipation (duh!)

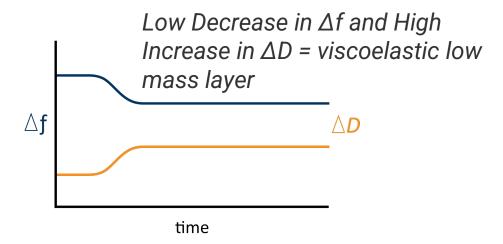
Dissipation or energy loss to the system is also measured:

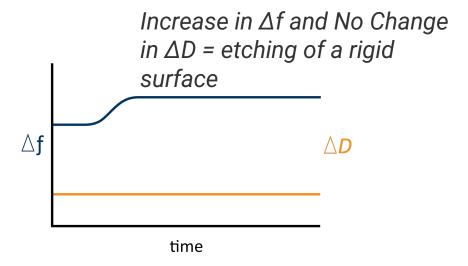
Provides info on viscoelastic properties of adsorbed layer:

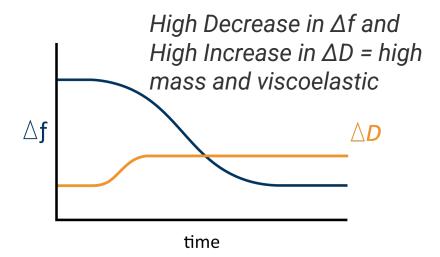
$$D = E_{lost}/2\pi E_{stored}$$

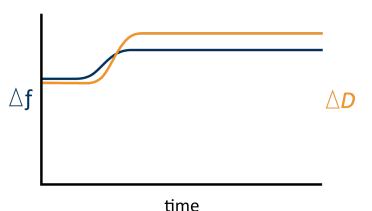
Where:

 \mathbf{E}_{lost} is the energy lost per oscillation cycle, \mathbf{E}_{stored} is the energy stored in the oscillating system


High dissipation suggests a viscoelastic (soft + hydrated) layer = more lost energy, whereas low dissipation suggests a rigid layer




MSE 4593

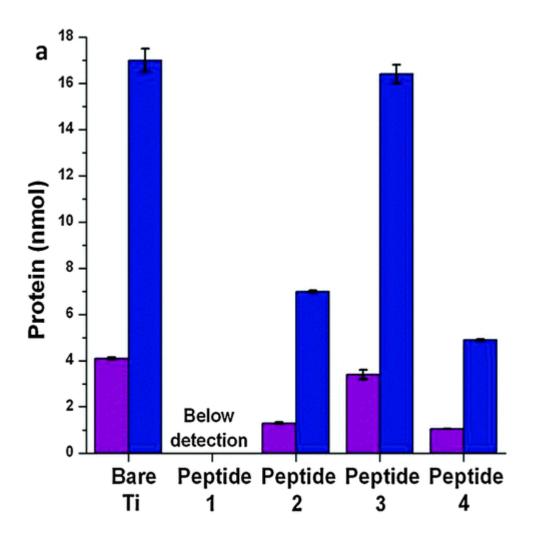

QCM basics

Making sense of it all

Increase in Δf with Increase in ΔD = mass removal associated with a softening of the layer

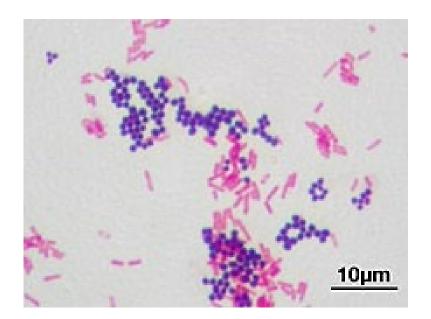
Peptide 1 – QCM-D




Fig. 3 (b) Real-time QCM-D measurements of peptide 1. Frequency overtones 5 and 7 are presented in green and blue respectively. Dissipation overtones 5 and 7 are presented in red and maroon respectively. Arrow A, indicates peptide addition, arrow B, washing with methanol.

- What do we see?
- Decrease in Δf when peptide is added (A), which means mass is absorbed, even after washing (B)
- Small increase in ΔD , indicating a rigid film, so Sauerbray equation can be used to estimate the adsorbed mass
- Here is what they got: 72.1 ± 0.4 ng cm⁻², $56 \pm$ 2 ng cm^{-2} , $14 \pm 3 \text{ ng cm}^{-2}$ and $13 \pm 2 \text{ ng}$ cm⁻² for peptides **1–4**, respectively
- They used another technique (XPS) to model the thickness of these layers, all were about 4 nm btw

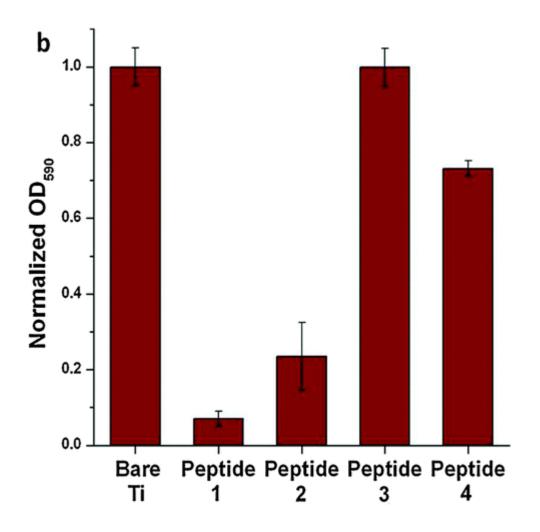
Antifouling activity – protein adsorption



- Looked at the adsorption of protein on peptide-coated titanium after incubation; violet = BSA and blue = lysozyme
- A "non-interfering protein assay kit™" was used to quantify the adsorbed protein
- Peptide 1 with 1 F atom shows the best performance (having 5 F atoms does not seem to help)
- Somehow the "configuration" of peptide 1 is best

Remember Gram Staining?

- Used to classify bacteria into 2 groups: gram-positive and gram-negative
- Gram-positive have a thick layer of peptidoglycan in the cell wall that retain the primary stain (Crystal Violet), whereas the thinner peptidoglycan layer is washed away with rinsing in gram-negative bacteria



A Gram stain of mixed <u>Staphylococcus aureus</u> (*S. aureus* ATCC 25923, <u>gram-positive</u> cocci, in purple) and <u>Escherichia coli</u> (*E. coli* ATCC 11775, <u>gram-negative</u> bacilli, in red), the most common Gram stain reference bacteria

Antifouling activity – interactions with bacteria

- Bare and peptide-coated substrates were incubated in inoculums of *Pseudomonas* aeruginosa and Escherichia coli (P. aeruginosa results showed on left)
- Staining with 2%(w/w) Crystal Violet after incubation; microscopy showed a thick and dense purple layer for bare titanium, more sparse for peptide-coated substrates
- Quantified by extracting the CV and measuring its absorbance
- End result: peptide 1 shows a 93% reduction in absorbance for *P. aeruginosa* and 74% for E. coli, again best performing

Conclusions

- New antifouling material based on the self-assembly of peptides
- Peptide design includes: (1) DOPA as the adsorptive/sticky motif and (2) diphenylalanine to direct the self-assembly
- For antifouling, an F atom (non-stick part in C-F bond) is needed
- Seems to work attaches to different surfaces, etc. (what about plastics?)
- Suggested for coatings on medical devices and hospital equipment to reduce hospital-acquired infections, maybe also useful in aquatic environments, OK...

Remind you of anything else you know that's not sticky?

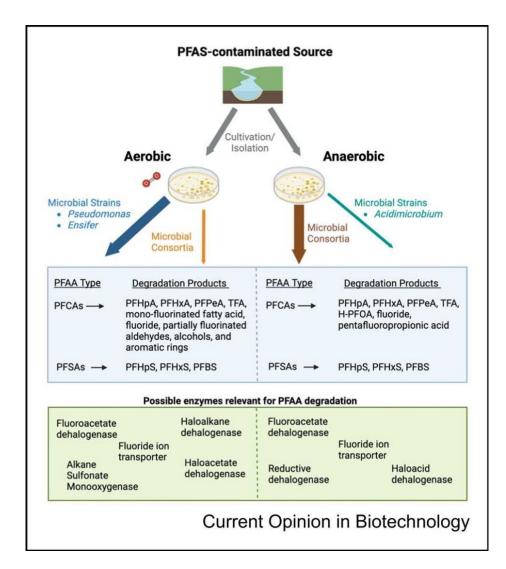
Remind you of anything else you know that's not sticky?

Yes! You got it! It's the miracle and curse of Teflon!

Brought to you by Dupont.. It's the Forever Chemical!

EPFL

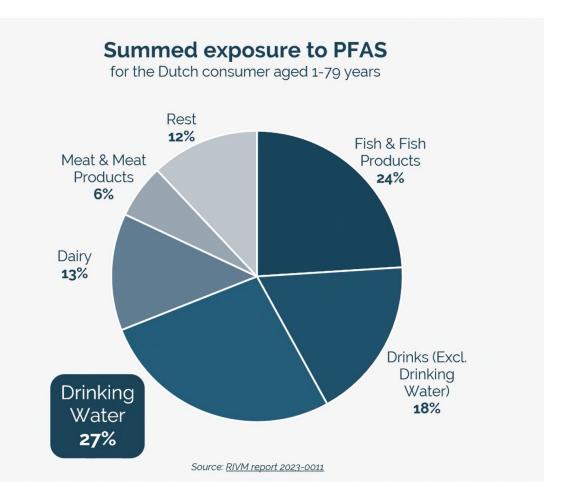
What are "Forever Chemicals"?


- Per- and polyfluoroalkyl substances, included in consumer groups since the 1940s
- Used everywhere textiles, industrial equipment, cosmetics, jet engines, medical devises, refrigeration systems, electrical devices, rain gear, etc.,
- They are incredibly chemically inert (think about the bond) – do they do not break down and accumulate in our soil and water (and us!)
- Tied to health implications
- Remediation approaches exist (many examples in literature)

ELM relationship? Bacterial remediation?

Highlights:

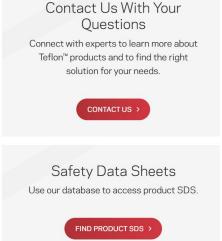
- •PFAA biodegradation with detection of degradation products has been reported.
- Biodegradation of PFAAs has been linked to specific genes.
- Biodegradation of PFAAs was observed under both aerobic and anaerobic conditions.
- A majority of PFAA biodegradation studies were reported for microbial consortia.


https://doi.org/10.1016/j.copbio.2024.103170

Drinking water is one of the primary exposure routes for humans to PFAS

You can still use these polymers for coatings?

Teflon™ Fluoropolymers Maintain Purity and Resist Biofilm Buildup



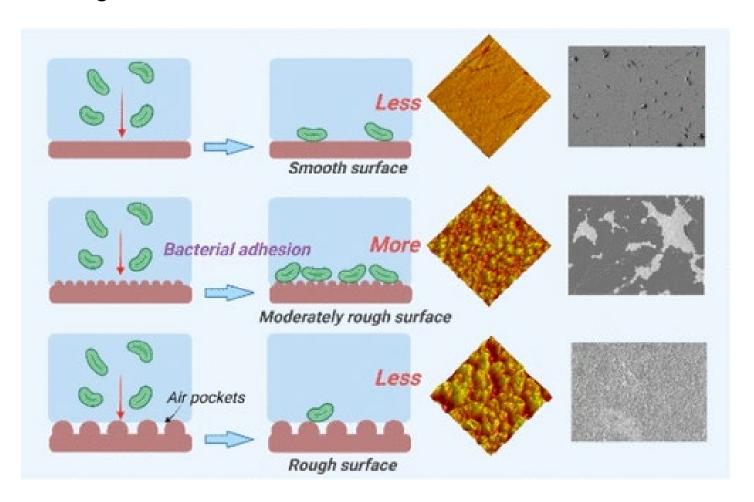
A Shield Against Chemical Attack and Biofilm Buildup

Teflon™ fluoropolymers offer a nearly universal chemical resistance. They produce a smooth, lowsurface energy layer that resists biofilm buildup and facilitates their use in many applications within the food/beverage, chemical processing, and semiconductor manufacturing industries.

How Teflon™ Fluoropolymers Help

With extremely low extractables and reactivity, plus high purity, Teflon™ fluoropolymers meet a wide range of regulatory and industry requirements.

RESOURCE LINKS


- Industrial Uses for Teflon™ Solutions
- → Teflon™ Products
- Solutions from Teflon™ Fluoropolymers
- → Teflon™ Brand Sales and Support

Commercial Teflon polymers marketed to the food industry

Still, the problem of biofilms is major!

Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion

https://doi.org/10.1021/acs.langmuir.3c00091

Takeaways

- Hydrophobic coatings can be useful to for antifouling
- Somehow it's not only "hydrophobic" it's also about the structure of the layer itself
- This is a good learning, even if adding more C-F bond-containing molecules to the environment is maybe not
- PFAS are problematic remediation strategies and legislation!